Touching lives, improving life. $P\&G^{^{\mathrm{TM}}}$

Designing Safety Into Products

A continuous analysis of alternatives

Mark Lafranconi

September 15, 2011

Product Safety — A Business Must

Company Policy

"Ensure that our products, packaging and operations are safe for our employees, consumers and the environment and comply with all applicable regulations."

- P&G Worldwide Business Conduct Manual

Safety Capability

- 700 People world wide
- 18 Countries
- 120 PhDs, MDs, DVMs

- Research Program driven by our safety assessment needs –
- 2,600 publications from P&G Safety Scientists

P&G

Design Safety In – Right from the start

Product Development Process

Science Based Safety Assessments

Principle

An ingredient is not safe or unsafe

 It's the use and exposure of an ingredient that can be judged as safe or unsafe

Goal of Safety Assessment

Amount used

<

amount that can cause harm

Exposure

- Route
- Duration
- Amount
- Other sources
- Unintended exposures

Hazard & Dose Response

- Endpoints
- Dose/route
- Susceptible populations

Safety Decisions

$$MOS = \frac{B_{RV}}{E_{xp}} \quad Or \quad \frac{PNEC}{PEC}$$

Exposure Assessment

Measurement

Modeling

Refine Assumptions

Worst case

Simulated use Airborne sampling Tissue sampling

Probabilistic PBPK

Habits & Practices
Dermal Penetration
Uncertainty factors

100% absorption
Deterministic calculations

Exposure Example - Inhalation

Simple

$$C_{avg} = M/V$$

Assumes no air exchange (Q)
All material released at once
Instant mixing
M is mass
V is volume

Complex

$$Cavg = \frac{G}{Q^2} \left(Q + \frac{V}{t} \left(e^{-\frac{Qt}{V}} - 1 \right) \right)$$

Assumes air exchange rate (Q) Material is released at a rate of G t is time of exposure

Hazard and Dose Response Assessment

Internal and External Sources of information

Structure and substructure searching

Special populations

Example - Compact Liquid Laundry

Safety Assessment

136 Publications56 Supplier studies33 Internal studies

MOS 165 - 2,500

20 Billion wash loads/year

Formula Example: Premium Compact Liquid Laundry Detergent			
Alcoholethoxy sulfate	20.1%	Diquaternium ethoxy sulfate	1.6%
Linear alkylbenzene sulfonate	2.7%	Polyethylene glycol-polyvinyl acetate	0.4%
Alkyl sulfate	6.5%	Polyethyleneimine propoxyethoxylate	1.0%
Laureth-9	0.8%	Diethylenetriamine pentaacetic acid	0.4%
Citric acid	3.8%	Disodium diaminostilbene disulfonate	0.01%
C12-18 fatty acids	2.0%	Ethanol	2.6%
Protease (stock)	1.5%	Propylene Glycol	4.6%
Amylase (stock)	0.3%	Diethylene Glycol	3.0%
Mannanase (stock)	0.1%	Polyethylene glycol	0.2%
Pectate Lyase (stock)	0.1%	Monoethanolamine	2.7%
Xyloglucanase (stock)	0.3%	Dye	0.01%
Borax	3.0%	Perfume	0.5%
Calcium formate	0.1%	NaOH	to pH 8.3
Sodium formate	0.1%	Water	to 100%

Environmental Pathways & Exposure

How We Assess Environmental Effects

QSAR Predictions

mathematical models

Single Species Testing (Acute & Chronic)

- Terrestrial (Agricultural Sustainability)
 - Higher Plants and Earthworms
- Aquatic Environment
 - Algae, Invertebrates & Fish

Mesocosm Testing

Ponds Experimental Stream Facility

Example – Anionic Surfactant

Life Cycle Assessment (LCA) in product innovation

Importance of "Informed Substitution"

Decision Elements

- Technological feasibility?
- Does it improve health and environmental safety?
- How does it impact cost, performance, economic/social considerations?
- Is it sustainable?
- What are the trade offs?

Increasing Transparency—Sharing P&G Science and Safety Information

P&G Product Safety

Product Safety

- http://www.pgproductsafety.com/productsafety/index.shtml
- Laundry and cleaning products technology
- www.scienceinthebox.com

- Beauty
- www.pgbeautyscience.com

